
Distributed Computational Offloading Across
Multiple HAPs and Terrestrial Data Centers

Jichen Lu, Osama Amin, Basem Shihada
Computer, Electrical and Mathematical Science and Engineering Division

King Abdullah University of Science and Technology (KAUST)
Thuwal, Makkah Prov., 23955, Saudi Arabia

{jichen.lu, osama.amin, basem.shihada}@kaust.edu.sa

Abstract—Data Center-enabled High Altitude Platforms (DC-
HAPs) show great potential in reducing the energy consumption
of terrestrial data centers by leveraging natural cooling and solar
power harvesting. This paper advances the field by analyzing
multi-platform architectures with multiple terrestrial data centers
(TDCs) and HAPs performing heterogeneous task offloading. We
formulate this complex problem mathematically and develop a
feasibility-preserving transformation approach to ensure optimiza-
tion stability. To solve this challenging problem, we propose a
novel heuristic sequential algorithm specifically designed for multi-
platform DC-HAP systems, while also tailoring two established
optimization methods—sequential quadratic programming (SQP)
and differential evolution (DE)—to address our unique problem
constraints. Comprehensive simulations demonstrate that robust
results are guaranteed with our proposed heuristic algorithm,
while the SQP algorithm with the transformed problem balances
performance and runtime better than the DE approach. The
increasing number of HAPs leads to capability degradation for the
SQP and DE algorithms, while our proposed heuristic algorithm
maintains powerful performance with the highest efficiency for
complex system architectures.

Index Terms—multiple high altitude platforms (HAPs), data
center-enabled HAP, green computing network, non-terrestrial
network, task-aware offloading, queue delay

I. INTRODUCTION

The exponential growth in computational demands from
artificial intelligence, edge computing, and data analytics has
created an urgent need for energy-efficient computing infras-
tructure. Data center electricity consumption, which represented
1.3% of global usage in 2010, is projected to reach 10% by
2050 [1]. This trajectory raises critical concerns about both
resource availability and environmental impact in the future
communication and computing system [2].

Cooling systems constitute 30-50% of data center energy
consumption due to the need for thermal management of
densely packed computing resources, while computational pro-
cessing itself typically accounts for 20-30% [3], [4]. Data
Center-enabled High Altitude Platforms (DC-HAPs) address
this challenge through strategic positioning in the stratosphere,
where ambient temperatures naturally eliminate cooling re-
quirements while abundant solar exposure enables renewable
energy harvesting. This dual advantage creates opportunities
for significantly more sustainable computing infrastructures.

Research on aerial computing platforms has evolved across
several dimensions, and plays an important role in the next gen-
eration communication system by providing multiple services
from an aerial level [5]–[7]. Ren et al. explored the caching and
computation assistance for transportation systems with HAPs
to achieve lower user delay [8]. Ding et al. investigated task
processing optimization in hybrid HAP-satellite architectures,
though limited to single-task scenarios [9]. Abderrahim et
al. examined DC-HAP energy efficiency, establishing their
potential but focusing exclusively on single-platform deploy-
ments [4]. We have investigated a comprehensive analysis of
single DC-HAP systems with single and multi-type workloads,
developing analytical expressions for maximum computational
utilization and establishing the relationship between task char-
acteristics and system performance [10].

However, practical implementations will inevitably involve
multiple platforms serving diverse geographic regions and
workload requirements. This paper extends our analysis to
the more general and realistic scenario of multiple intercon-
nected TDC-HAP systems with heterogeneous task offloading
requirements. Our work provides a foundation for the prac-
tical deployment of aerial computing infrastructures at scale,
addressing both technical optimization challenges and system
design considerations. Our contributions include:

• Extending our theoretical framework to accommodate
multiple HAPs and TDCs with diverse communication
pathways and computational capabilities.

• Formulating a transformation-based optimization frame-
work that guarantees solution feasibility despite the inter-
connected constraints of multi-platform architectures.

• Developing algorithms tailored to the unique topology
and resource allocation challenges of distributed aerial
computing networks.

II. SYSTEM MODELING

In our multi-platform architecture, TDCs can offload compu-
tational tasks to HAPs equipped with data center capabilities.
We focus on uplink transmission and aerial computational
processing, since the result data generated by DC-HAPs is
generally compact and requires minimal resources for downlink
delivery to TDCs [11], [12].

A. Computational Energy Model

Consider a heterogeneous system comprising NTDC TDCs
and NHAP HAPs, both capable of processing computational
workloads. Each HAP h contains Ns identical servers, each
providing computational capacity of µ instructions per second
(IPS). Each TDC t processes N t different task types, with all
tasks initially arriving at TDCs before potential HAP offload-
ing.

For each task type i ∈ 1, . . . , N t at TDC t, we define
its instruction length lti (instructions/task) and bit length bti
(bits/task). The offloading rate of type i tasks from TDC t
to HAP h is denoted by λt,h

i . According to [10], the energy
consumption in TDCs is proportional to the utilization of TDC
servers. Therefore, we convert the energy saving metric to
computational utilization of HAPs and maximize it:

ρtotalcomp =
∑NHAP

h=1

∑NTDC

t=1

∑Nt

i=1 λ
t,h
i lti

Nsµ
. (1)

B. Transmission Model

For the wireless communication between TDCs and HAPs,
we adopt the transmission throughput model from [10]. The
conservative data rate of link between TDC t and HAP h is:

Rt,h
min =B log (1 +Nrγ) . (2)

where B is the bandwidth; Nr is the number of transmitter
antennas in MIMO; and γ is the path loss.

C. Tasks Offloading Delay

The multi-platform scenario introduces additional complexity
since each TDC can offload any task type to any HAP within
the network. Building upon [10], we extend the delay expres-
sions to accommodate this topology. For the i-th task type from
TDC t offloaded to HAP h, the total sojourn time is:

T t,h
i = T t,h

trans,i + T t,h
comp,i, (3)

where each component incorporates both waiting time W and
service time S:

T t,h
trans,i = W t

trans,i + St,h
trans,i (4)

T t,h
comp,i = Wh

comp,i + St,h
comp,i. (5)

Note that the waiting time depends on the specific transmission
or computational queue. For transmission, we derive:

W t
trans,i ≈

∑NHAP

h=1

∑Nt

j=1 λ
t,h
j

(
1 + c2s,trans,j

) (bj
R

)2
2(1− ρtrans)

, (6)

St,h
trans,i =

bti
Rt,h

. (7)

The transmission resource utilization must satisfy condition:

ρttrans =
∑NHAP

h=1

∑Nt

i=1

λt,h
i bt,hi

Rt,h
< 1. (8)

Similarly for computation, with ρcomp =
∑N

j=1 ρcomp,j and
cs,comp,j as the coefficient of variation of computational service
time for type j:

Wh
comp,i ≈

∑NTDC

t=1

∑Nt

j=1 λ
t,h
j

(
1 + c2s,comp,j

) (lj
Nsµ

)2
2(1− ρcomp)

, (9)

St,h
comp,i =

lti
µ
. (10)

The computational resource utilization must satisfy:

ρhcomp =
∑NTDC

t=1

∑Nt

i=1

λt,h
i lti
Nsµ

< 1. (11)

III. OPTIMIZATION PROBLEM FORMULATION

In this section, we extend our analysis to a more practical
scenario with multiple TDCs and HAPs. We consider a fully
connected network architecture where each TDC can offload
tasks to any HAP, and each HAP can receive and process tasks
from any TDC. We first formulate the general optimization
problem and then apply a feasibility-preserving transformation
to ensure solution stability.

A. Problem Formulation

For our multiple TDC-HAP scenario, we assume known
positions of all TDCs and HAPs. Our objective is to deter-
mine the optimal offloading rates λt,h

i across the network that
maximize computational utilization. Task properties (bti, l

t
i) are

predetermined by application requirements [13]–[15].
Following the modeling, we formulate the optimization

problem to maximize computational resource utilization while
ensuring system stability and meeting latency constraints:

max
λt,h
i

ρtotalcomp

(
λ1,1
1 , . . . , λNTDC,NHAP

NNTDC

)
(12a)

subject to λt,h
i ≥ 0, ∀t, h, i, (12b)

ρttrans

(
λt,1
1 , . . . , λt,NHAP

Nt

)
< 1, ∀t, (12c)

ρhcomp

(
λ1,h
1 , . . . , λNTDC,h

NNTDC

)
< 1, ∀h, (12d)

T t,h
i

(
λ1,1
1 , . . . , λNTDC,NHAP

NNTDC

)
≤ tdelay, ∀t, h, i.

(12e)

where constraints (12c) and (12d) ensure stable transmission
and computation queues for every TDC and HAP, respectively,
while (12e) enforces latency requirements for all task types
across all network paths.

B. Feasibility-preserving Transformation

The multi-platform formulation in (12) presents greater
complexity and higher variable correlation than our single
TDC-HAP model [10]. This increased interconnectedness raises
the likelihood of encountering infeasible intermediate solu-
tions during optimization. We therefore adapt our feasibility-
preserving transformation approach to deal with this compli-
cated scenario.

Our transformation follows three steps. First, we convert
variables λt,h

i to utilization pairs (ut,h
i , vt,hi), where ut,h

i rep-
resents transmission utilization and vt,hi denotes computational
utilization for each task type. Second, we eliminate dependency
between these variables by defining:

λt,h
i = min

(
Rt,hut,h

i

bt,hi

,
µNsv

t,h
i

lt,hi

)
. (13)

Finally, we apply a Softmax-based feasibility-preserving trans-
formation. Unlike the single TDC-HAP case, we must account
for separate utilization constraints across platforms. From (8)
and (11), transmission utilization is bounded per TDC while
computational utilization is bounded per HAP. We introduce
slack variables for each TDC and HAP, transforming uncon-
strained variables (u′t,h

i , v′t,hi) into feasible utilization pairs:

ut,h
i = St(u′) =

eu
′t,h
i∑NHAP

h=1

∑Nt

j=0 e
u′t,h
j + eu

′t
0

(14a)

vt,hi = Sc(v′) =
ev

′t,h
i∑NTDC

t=1

∑Nt

j=0 e
v′t,h
j + ev

′h
0

(14b)

where eu
′t
0 and ev

′h
0 serve as slack variables for each TDC t

and HAP h, respectively.
After the transformation, we can write the problem as:

max
u′t,h
i ,v′t,h

i

ρtotalcomp (15a)

s.t. T t,h
i ≤ tdelay (15b)

After solving the problem, we can we can calculate λi from:

λt,h
i =min

R

bi

eu
′t,h
i∑NHAP

h=1

∑Nt

j=0 e
u′t,h
j + eu

′t
0

,

µNs

li

ev
′t,h
i∑NTDC

t=1

∑Nt

j=0 e
v′t,h
j + ev

′h
0

 .

(16)

IV. ALGORITHMS DESIGN

This section introduces three algorithms to solve Problem 15:
a heuristic approach, a gradient-based method (SQP), and an
evolutionary algorithm (DE).

A. Heuristic Sequential Algorithm

Our heuristic approach first orders task types by their max-
imum achievable computational utilization before sequentially
allocating resources. However, in multi-platform scenarios, the
variables λt,h

i are highly correlated through utilization con-
straints, complicating direct extension of this approach. We
therefore develop a link selection strategy that decomposes our
problem into several single TDC-HAP subproblems.

Our heuristic algorithm selectively activates certain links
while disabling others, despite full connectivity being phys-
ically available. The selection process follows three princi-
ples: (1) prioritize links with higher throughput to maximize

transmission capacity, (2) avoid assigning multiple HAPs to a
single TDC to prevent transmission bottlenecks, and (3) balance
throughput allocation across HAPs by prioritizing those with
lower aggregate throughput. Algorithm 1 details this approach,
which selects min(NTDC, NHAP) links in total.

Algorithm 1 Heuristic Sequential Algorithm

1: Initialization: Create an empty selected HAP index vector
S with length of NTDC, initialize all the elements as -1.

2: Begin:
3: Sum the transmission throughput of each HAP, and sort the

HAPs by the sum of the throughput from low to high.
4: for h in NHAP do
5: Select the non-assigned TDC with the highest throughput

to the HAP h, and assign the HAP index to the TDC.
6: end for
7: Get the selected HAP index vector S.
8: for t, h in enumurate(S) do
9: Create an empty selected type list St. Create an empty

task rate vector λt. Initialize ρhcomp = 0.
10: Calculate the λt,h

max,i, ρ
t,h
comp,i using derived equations in

[10]. Sort types based on ρt,hcomp,i, put to list L.
11: for i in N t do
12: if i == 1 then
13: Append i to St; append λt,h

max,i to λt; ρhcomp =

ρt,hcomp,i.
14: else
15: for j in nstep do
16: Set rs = j

nstep
; λt

prev = rsλ
t.

17: Calculate λt,h
i,rs

as in [10].
18: Re-scale as rb[λ

t
prev, λ

t
i,rs

] with binary search to
guarantee (12e), and calculate ρ′comp with it.

19: if ρ′comp ≥ ρhcomp then
20: λt

new = rb[λ
t
prev, λ

t
i,rs

]; ρmax
comp = ρ′comp.

21: end if
22: end for
23: Set λt = λnew

t; append type i into the list St.
24: end if
25: end for
26: Get the λt using (16) and calculate ρhcomp as in [10].
27: end for
28: End: Calculate ρtotalcomp with (1).

Complexity Analysis: The original single TDC-HAP heuris-
tic algorithm has complexity O(N tnstep log nstep), where
N t is the number of task types and nstep is the lin-
ear search step count [10]. Our multi-platform exten-
sion adds link selection complexity of O(NHAPNTDC +
NHAPNTDC logNTDC + NHAP logNHAP), where terms cor-
respond to throughput calculation, per-HAP sorting, and
HAP aggregate throughput sorting, respectively. The overall
complexity is O(NHAPNTDC logNTDC + NHAP logNHAP +
min(NTDC, NHAP)max(N t)nstep log nstep).

B. Sequential Quadratic Programming Algorithm

We implement Sequential Quadratic Programming (SQP) to
solve our non-linear, non-convex optimization problem. We first
transform the original problem as shown in (15) to ensure
utilization constraints are inherently satisfied.

For each iteration, we construct the Lagrangian function,
solve the quadratic programming subproblem, and update vari-
ables until convergence or reaching the maximum iteration
count miter. The multi-platform scenario expands variables
from a vector of length N t to a tensor of size NTDC ×
NHAP ×N t, making our feasibility-preserving transformation
particularly important.
Complexity Analysis: The complexity of the original SQP al-
gorithm is O(miterN

t3), where miter is the maximum iteration
limit, and N t is the number of types of tasks in the set [10].
Since the only difference between the single TDC-HAP single-
type scenario and the multiple TDC-HAP multi-type scenario is
the dimension of the variables and constraints, the complexity
of the algorithms will change the original dimension N t to
N ′ = NTDC × NHAP ×max(N t). Therefore, the complexity
of the algorithms will be O(miterN

′3) for the SQP algorithm
for multiple TDC-HAP multi-type scenario.

Algorithm 2 Sequential Quadratic Programming

1: Initialization: u′
i, v′i: initial guess for transmission and

computation utilization of each type i; k: initial guess for
the Lagrange multiplier; citer = 0: iteration counter.

2: Begin:
3: while citer < miter do
4: Transform u′t,h

i , v′
t,h
i to ut,h

i , vt,hi with Eq. (14). Get
the λt,h

i from (16) and identify the minimum expression
which will be used to calculate the gradient.

5: Construct Lagrangian function as:

L = ρtotalcomp + k(T− tdelay) (17)

6: Calculate the gradient g of the Lagrangian function with
respect to u and v; construct the Hessian matrix H of
the Lagrangian function.

7: Construct and solve the QP subproblem to obtain the
search direction p:

min
p

1

2
pTHp+ gT p

s.t. (T− tdelay) +∇(T− tdelay)
T p ≤ 0

(18)

8: Perform a line search to determine the step size α.
9: Update the current point:

u′t,h
i = u′t,h

i + αp, v′
t,h
i = v′

t,h
i + αp (19)

10: Update the Lagrange multiplier k. citer = citer + 1.
11: Break if ||p|| < tol.
12: end while
13: End: Get the vector λ with (16), calculate ρtotalcomp with (1).

C. Differential Evolution Algorithm

For our non-linear, non-convex optimization problem, we
also implement Differential Evolution (DE), which excels
where traditional gradient-based methods may struggle. DE’s
population-based approach explores multiple solution space
regions simultaneously, making it less sensitive to initial con-
ditions and well-suited for complex landscapes.

We first transform the problem to ensure constraint satis-
faction during initial population sampling. The DE algorithm
then iteratively refines candidate solutions through selection,
mutation, and crossover operations, evaluating fitness based on
objective function value and constraint satisfaction.
Complexity Analysis: The complexity of the DE algorithm
for single TDC-HAP multi-type is O(miter(NpopN

t+N2
pop)),

where miter is the maximum iteration/generation limit, Npop is
the population size, and N is the number of types of tasks in the
set [10]. The multiple TDC-HAP scheme changes the original
dimension from N t to N ′ = NTDC×NHAP×N . Therefore, the
complexity of the algorithms will be O(miter(NpopN

′+N2
pop))

for the Differential Evolution algorithm.

Algorithm 3 Differential Evolution Algorithm

1: Initialization: (u′t,h
i , v′

t,h
i): initial guess of Npop individu-

als for transmission utilization and computation utilization
of each type i; citer = 0: iteration counter.

2: Begin:
3: while citer < miter do
4: Transform u′t,h

i , v′
t,h
i to ut,h

i , vt,hi with (14) for each
individual. Get the λt,h

i with (16).
5: Evaluate the objective function ρtotalcomp for each individ-

ual; evaluate the constraint (15b) for each individual.
6: Select the best individual (ubest,vbest) from the popu-

lation based on the following rules: select the feasible
ones with higher objective value; if no feasible ones,
select ones with lower constraint violation value.

7: Select two random individuals (ub,vb) and (uc,vc)
from the population.

8: Generate a trial vector as:

ut = ubest + F (ub − uc) (20a)
vt = vbest + F (vb − vc) (20b)

9: Perform a crossover operation as to generate new indi-
vidual (unew,vnew) for each individual.

10: Evaluate the objective function ρtotalcomp and the con-
straint Eq. (15b) for the new individual (unew,vnew);
replace the old individual (u,v) with the new individual
(unew,vnew) if the new individual has a better perfor-
mance based on the rules above.

11: citer = citer + 1.
12: end while
13: End: Get the vector λ with (16), calculate ρtotalcomp with (1).

V. SIMULATION RESULTS

Our simulation considers multiple TDCs and HAPs posi-
tioned within a region of 1 degree in latitude and 1 degree in
longitude. In each single experiment, we generate the positions
of TDCs and HAPs randomly within the region to evaluate
the performance of algorithms under arbitrary topologies. The
transmission configuration includes Ptrans = 100W, Nt = 2
transmitting antennas, a carrier frequency of fc = 31GHz,
and bandwidth B = 100MHz. Each HAP contains Ns = 20
servers processing at µ = 580MIPS [16], with tasks evenly
distributed. TDCs are equipped with Nr = 16 receiving
antennas. Task data sizes range from 300KB to 800KB, with
computational requirements between 100 and 1000 MegaCycles
and an average cycles-to-instructions ratio of 3.7 [17]. Note that
the summation ρtotalcomp could be greater than 1.

A. Simulation Performance with Varying Type Number
We first evaluate algorithm performance with different num-

bers of task types. The setup includes 2 TDCs and 2 HAPs, with
task types varying from 1 to 5 per TDC (each TDC having 5
potential task types). For fair comparison, we order types using
Algorithm 1 across all algorithms. Results appear in Fig. 1.

Our heuristic algorithm shows remarkable stability, maintain-
ing consistent performance as complexity increases. SQP and
DE algorithms achieve higher utilization with fewer task types,
suggesting the heuristic finds local optima. However, both SQP
and DE exhibit performance degradation as task types increase,
indicating sensitivity to problem dimensionality. Notably, there
exists a rise for the SQP and DE algorithms when the type
number is 5. Since we add the types in the same order as in
the heuristic algorithm for comparison fairness, this suggests
that the types with low utilization order may benefit the final
performance when combined with other high-order types.

The transformed Problem (15) generally improves SQP and
DE performance by reducing infeasible intermediate solutions.
When the original Problem (12) performs better with fewer
task types, this likely stems from its lower dimensionality
facilitating convergence. As dimensions increase, the original
problem becomes harder to solve, particularly for the SQP
algorithm, which frequently encounters infeasible solutions and
fails to converge without transformation.

As for the runtime of the algorithms, we show the time plot
in Fig. 2. The SQP algorithm is the fastest due to its gradient-
based design, which converges rapidly. The heuristic algorithm
is the second fastest, thanks to its simple searching design.
However, note that the performance of the heuristic algorithm
does not drop with fewer task types; we can just apply the
results of it with one task type to save time. The DE algorithm
is the slowest with population-based design. Combining Fig. 1,
SQP is recommended to be combined with type sorting in
Algorithm 1.

B. Simulation Performance with Varying Number of HAPs
We also explore how the number of HAPs affects the

performance of our algorithms. The simulation setup includes

Fig. 1: ρtotalcomp with various numbers of task types.

Fig. 2: Algorithm runtime with various numbers of task types.

2 TDCs, and the number of HAPs is varied from 2 to 8, where
the new HAPs’ positions are randomly generated as before. The
number of task types is fixed at 2.

From Fig. 3, we can see that the total utilization increases
with the number of HAPs. This is because more HAPs provide
more computational resources, and the transmission resources
are also increased due to the increased number of links and
the possibility of gaining higher throughput. Our heuristic
algorithm maintains the increasing trend, which suggests that
our heuristic design is robust when dealing with the complex
topology scheme of the DC-HAP system. The SQP algorithm
failed to achieve high total computational utilization when the
number of HAPs is large due to the difficulty of finding a
good local optimum under rapid growth of complexity. At the
same time, the DE algorithm maintains an increasing perfor-
mance comparable to our heuristic algorithm and surpasses our

Fig. 3: ρtotalcomp with various numbers of HAPs.

Fig. 4: Algorithm runtime with various numbers of HAPs.

algorithm when the number of HAPs is small. This indicates
the broader searching ability of the DE algorithm for multiple
TDC-HAP multi-type scenarios, while being sensitive to high-
dimensional complexity. Combining with the runtime shown in
Fig. 4, our heuristic algorithm is the most efficient algorithm
with powerful performance under complex system topologies.

VI. CONCLUSION

This work extends task-aware offloading in DC-HAP sys-
tems to multi-platform scenarios by developing a mathematical
framework that transforms complex optimization problems into
more tractable forms. We introduced three algorithms—a stable
heuristic approach, a fast gradient-based SQP method, and a
high-performance evolutionary DE algorithm—each offering
different trade-offs between computational efficiency and so-
lution quality. Our simulations reveal that while the heuristic

maintains consistent performance across varying conditions,
DE and SQP can achieve higher utilization in simpler scenarios
but show greater variability with increased complexity. We
observed decreasing capability for the SQP and DE algorithms
with additional HAPs, while our heuristic algorithm maintains a
robust and efficient performance. These findings provide valu-
able insights for designing next-generation green computing
infrastructure, balancing performance demands with resource
constraints while maintaining service guarantees in distributed
aerial computing systems.

REFERENCES

[1] W. He, Q. Xu, S. Liu, T. Wang, F. Wang, X. Wu, Y. Wang, and H. Li,
“Analysis on data center power supply system based on multiple renew-
able power configurations and multi-objective optimization,” Renewable
Energy, vol. 222, p. 119865, Feb. 2024.

[2] O. Amin, S. Dang, A. M. Abdelhady, G. Ma, J. Ye, M.-S. Alouini, and
B. Shihada, “Beyond the Wi-Fi era,” Frontiers Commun. Netw., vol. 5, p.
1486488, Sep. 2024.

[3] L. Ismail and H. Materwala, “Computing server power modeling in a data
center: Survey, taxonomy, and performance evaluation,” ACM Comput.
Surv., vol. 53, no. 3, pp. 1–34, June 2020.

[4] W. Abderrahim, O. Amin, and B. Shihada, “How to leverage high altitude
platforms in green computing?” IEEE Commun. Mag., vol. 61, no. 7, pp.
134–140, July 2023.

[5] K. Mershad, H. Dahrouj, H. Sarieddeen, B. Shihada, T. Al-Naffouri,
and M.-S. Alouini, “Cloud-enabled high-altitude platform systems: Chal-
lenges and opportunities,” Frontiers in Commun. and Netw., vol. 2, p.
716265, July 2021.

[6] O. Abbasi, A. Yadav, H. Yanikomeroglu, N.-D. Ðào, G. Senarath, and
P. Zhu, “HAPS for 6G networks: Potential use cases, open challenges, and
possible solutions,” IEEE Wireless Commun., vol. 31, no. 3, pp. 324–331,
Jan. 2024.

[7] S. Ammar, C. P. Lau, and B. Shihada, “An in-depth survey on virtualiza-
tion technologies in 6g integrated terrestrial and non-terrestrial networks,”
IEEE Open J. Commun. Soc, vol. 5, pp. 3690–3734, June 2024.

[8] Q. Ren, O. Abbasi, G. K. Kurt, H. Yanikomeroglu, and J. Chen,
“Caching and computation offloading in high altitude platform station
(HAPS) assisted intelligent transportation systems,” IEEE Trans. Wireless
Commun., vol. 21, no. 11, pp. 9010–9024, May 2022.

[9] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Trans. Wireless Commun.,
vol. 21, no. 2, pp. 1362–1377, Aug. 2021.

[10] J. Lu, O. Amin, and B. Shihada, “Task-aware offloading for cloud comput-
ing in sky-based aerial data centers,” TechRxiv, 2025, preprint. [Online].
Available: https://doi.org/10.36227/techrxiv.175615804.41945749/v1

[11] L. Qin, H. Lu, Y. Chen, B. Chong, and F. Wu, “Towards decentralized
task offloading and resource allocation in user-centric mec,” IEEE Trans.
Mobile Comput., May 2024.

[12] H. Vijayaraghavan, J. von Mankowski, and W. Kellerer, “ComputiFi:
Latency-optimized task offloading in multipath multihop LiFi-WiFi net-
works,” IEEE Open J. Commun. Soc, July 2024.

[13] H. Che, Z. Bai, R. Zuo, and H. Li, “A deep reinforcement learning
approach to the optimization of data center task scheduling,” Complexity,
vol. 2020, no. 1, p. 3046769, 2020.

[14] A. Marahatta, S. Pirbhulal, F. Zhang, R. M. Parizi, K.-K. R. Choo,
and Z. Liu, “Classification-based and energy-efficient dynamic task
scheduling scheme for virtualized cloud data center,” IEEE Trans. Cloud
Comput., vol. 9, no. 4, pp. 1376–1390, May 2019.

[15] H. Yuan, J. Bi, J. Zhang, and M. Zhou, “Energy consumption and
performance optimized task scheduling in distributed data centers,” IEEE
Trans. Syst., Man, Cybern. Syst., vol. 52, no. 9, pp. 5506–5517, Nov
2021.

[16] W. Abderrahim, O. Amin, and B. Shihada, “Data center-enabled high
altitude platforms: A green computing alternative,” IEEE Trans. Mobile
Comput., Sep. 2023.

[17] H. Guo, J. Liu, and J. Lv, “Toward intelligent task offloading at the edge,”
IEEE Network, vol. 34, no. 2, pp. 128–134, Oct. 2019.

